27x+108+27x-108=5(x^2-16)

Simple and best practice solution for 27x+108+27x-108=5(x^2-16) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 27x+108+27x-108=5(x^2-16) equation:



27x+108+27x-108=5(x^2-16)
We move all terms to the left:
27x+108+27x-108-(5(x^2-16))=0
We add all the numbers together, and all the variables
54x-(5(x^2-16))=0
We calculate terms in parentheses: -(5(x^2-16)), so:
5(x^2-16)
We multiply parentheses
5x^2-80
Back to the equation:
-(5x^2-80)
We get rid of parentheses
-5x^2+54x+80=0
a = -5; b = 54; c = +80;
Δ = b2-4ac
Δ = 542-4·(-5)·80
Δ = 4516
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4516}=\sqrt{4*1129}=\sqrt{4}*\sqrt{1129}=2\sqrt{1129}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(54)-2\sqrt{1129}}{2*-5}=\frac{-54-2\sqrt{1129}}{-10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(54)+2\sqrt{1129}}{2*-5}=\frac{-54+2\sqrt{1129}}{-10} $

See similar equations:

| 27x+108+27x-108=5(x^-16) | | 4x-10+x-10+x+2=180 | | 2x−5=3x−27 | | 70=9b−29 | | 24=-6+x/5 | | 2x-5=4x+23 | | -16t^2+160t=256 | | 5x+35=140 | | 70=5y+5 | | -2h-16=13h-6 | | (x−6 13)÷0.8=(5x+6)÷13 | | 11=2k+1 | | M/1.5m=15 | | (13x-19)+(4x+12)=180 | | 13(m-2)=-4(11=m)=1 | | 1.8xx=10 | | 3x13=42 | | 1.666667=x/x-4 | | (142−1)·q=142·981−981 | | 9=f-19/6 | | 4x-3=1x+6 | | y=-8*4 | | y=5−7 | | 48÷6+x=11 | | 749+(y+31)=(749+936)+31 | | 8.2(s+4)=6.4s+5.2 | | y=-8*5 | | g-45/5=8 | | 686.49+697.12=g+686.49 | | .5x-8=11-7x+12x | | 9x+9=4x+25 | | s+90=90+89 |

Equations solver categories